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RECENT DEVELOPMENT AND APPLICATIONS OF WENO
SCHEMES

CHI-WANG SHU
Division of Applied Mathematics, Brown University
Providence, RI 02912, USA. E-mail: shu@cfm.brown.edu

Abstract. This paper is a summary of the author's talk given in the Third
AFOSR International Conference on DNS/LES (TAICDL), held at the Uni-
versity of Texas at Arlington on August 5-9, 2001. In this paper we briefly
present the general ideas of high order accurate weighted essentially non-
oscillatory (WENO) schemes, and describe the similarities and differences
of the two classes of WENO schemes: finite volume schemes and finite differ-
ence schemes. We also briefly mention two recent developments of WENO
schemes, namely a technique to treat negative linear weights and a class of
high order central WENO schemes.

1. Introduction

This paper is a summary of my talk given in the Third AFOSR International
Conference on DNS/LES (TAICDL), held at the University of Texas at
Arlington on August 5-9, 2001. In this paper we briefly present the general
ideas of high order accurate weighted essentially non-oscillatory (WENO)
schemes, and describe the similarities and differences of the two classes of
WENO schemes: finite volume schemes and finite difference schemes. We
also briefly mention two recent developments of WENO schemes, namely a
technique to treat negative linear weights and a class of high order central
WENO schemes.

High order accurate weighted essentially non-oscillatory (WENO) schemes
have been developed to solve a hyperbolic conservation law

ut+V.f(u) =0. (1.1)

The first WENO scheme was constructed in [19] for a third order finite vol-
nine version in one space dimension. In [11], third and fifth order finite dif-
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ference WENO schemes in multiple space dimensions are constructed, with
a general framework for the design of the smoothness indicators and non-
linear weights. Later, second, third and fourth order finite volume WENO
schemes for 2D general triangulation have been developed in [5] and [9].
Very high order finite difference WENO schemes (for orders between 7 and
11) have been developed in [1]. Central WENO schemes have been devel-
oped in [13], [14], [15] and [22]. A technique to treat negative linear weights
in WENO schemes has been developed in [23]. In this conference, Jiang,
Shan and Liu presented their new results on developing compact WENO
schemes.

WENO schemes are designed based on the successful ENO schemes
in [8, 26, 27]. Both ENO and WENO schemes use the idea of adaptive
stencils in the reconstruction procedure based on the local smoothness of
the numerical solution to automatically achieve high order accuracy and
non-oscillatory property near discontinuities. ENO uses just one (optimal in
some sense) out of many candidate stencils when doing the reconstruction;
while WENO uses a convex combination of all the candidate stencils, each
being assigned a nonlinear weight which depends on the local smoothness of
the numerical solution based on that stencil. WENO improves upon ENO
in robustness, better smoothness of fluxes, better steady state convergence,
better provable convergence properties, and more efficiency. For a detailed
review of ENO and WENO schemes, up to the time when these notes were
published, we refer to the lecture notes [24, 25].

WENO schemes have already been widely used in applications. Some of
the examples include dynamical response of a stellar atmosphere to pressure
perturbations [4]; shock vortex interactions and other gas dynamics prob-
lems [6], [7]; incompressible flow problems [28]; Hamilton-Jacobi equations
[10]; magneto-hydrodynamics [12]; underwater blast-wave focusing [16]; the
composite schemes and shallow water equations [17], [18], real gas compu-
tations [20], wave propagation using Fey's method of transport [21]; etc. In
this conference and in this volume, we have seen several new developments
and applications of WENO schemes for DNS/LES of turbulence flows.

The organization of this paper is as follows. In section 2 we discuss two
different formulations of WENO schemes, namely the finite volume formu-
lation and the finite difference formulation, and point out their similarities
and differences, both in one dimension and in multiple space dimensions. In
section 3 we briefly describe two recent developments of WENO schemes,
namely the technique to treat negative linear weights [23] and the very high
order central WENO schemes [22].
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2. Finite volume and finite difference WENO schemes

A finite volume scheme for a conservation law such as (1.1) approximates
an integral version of it. Let's use the one dimensional example

ut + f (u), = 0 (2.1)

to illustrate the ideas. Suppose {Ii = [xi I ]}, i 1, ..., N, is a parti-
tion of the computational domain, and Axi = xj+1 - x_½. If we integrate

the PDE (2.1) in the cell Ii, we obtain

d'in(t) + 1 [f(u(xi+ , t)) - f (u(xj_ ,t))] =0 (2.2)

dt Asvj 2 2

where w- = u(x,t)dx

is the cell average of u in cell Ii. Notice that (2.2) is not a scheme yet, rather
it is still an exact identity satisfied by the exact solution of the PDE (2.1).
This is the starting point, though, for designing a finite volume scheme.

A semi-discrete (discrete in the spatial variable only) finite volume
scheme for (2.1) is an ODE system for the cell averages {Ii(t)}, i = 1, ..., N.
In order to obtain such a scheme, we would need the following reconstruc-
tion procedure:
Procedure 2.1: Reconstruction. Obtain accurate point values {u(xj+j½, t)},

i = 0, ..., N, from the given cell averages {ti(t)}, i = 1, ..., N.
Notice that we have ignored possible problems at the boundary. We

thus assume the data is either periodic or compactly supported. Boundary
conditions can be treated in a stable and high order fashion depending on
the type of boundary conditions.

WENO is simply a specific reconstruction procedure. Let us demon-
strate the fifth order version. For this purpose, the approximation of {u(xi+ , t) }

uses the information of five cell averages, from the stencil {Ii-2, Ii-1, Ii, Ii+1, Ii+2}.

This stencil is not symmetric with respect to the point xji+ of the recon-
struction. There is one more cell to the left than to the right. Thus this
reconstruction is good for upwinding. The procedure consists of the follow-
ing steps:

1. We break the final stencil

T = {Ii-2, Ii-1, Ii, Ii+1, Ii+2} (2.3)

into the following three smaller stencils:

S1 = {Ii-2, Ii-IIi}, S2 = {Ii- 1 , Ii, Ii+l}, S3 = {Ii, Ii+l, Ii+2}.

Notice that each small stencil contains the "target cell" Ii.
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2. We construct three polynomials pj (x) of degree at most two, with their
cell averages agreeing with that of the function u in the three cells in
each stencil Sj. We also construct a polynomial Q(x) of degree at most
four, with its cell averages agreeing with that of the function u in the
five cells in the larger stencil T. The three lower order approximations
to u(xi+1l 2 ), associated with pj(x), in terms of the given cell averages
of u, are given by:

1 7 11
Pi(Xi+l/2 ) = 3 ui-2 - 6 iii-1 + "-i,

P2(Xi+l/ 2 ) = --- ui-1 + 5-ii + IUi+i, (2.4)
1 5 1

P3(Xi+1/2) = 3 u-i +÷ -U~i-1 -- 6 Ui-F2

The coefficients in front of the U2 could be derived by Lagrange polyno-
mials or by solving a small 3 x 3 linear system, from the condition that
the quadratic polynomial pj (x) has the same cell averages as the given
ii in the relevant stencil. See [24] for details. Each of the Pj(Xi+l/2)

in (2.4) is a third order approximation to u(xi+l/2). The fifth order
approximation to u(xi+j1 2 ), associated with Q(x), is given by:

1 13 47 9 1 _
Q(Xi+1/2) = -Ui-2 - "• i-1 + -6-i + U -i+l - •-i+2. (2.5)

30 - 60 - 60 20 -20(.5

3. We find three constants, also called linear weights,
1 _3 3

"Y1 = 1- ' Y2 , '73 = 3, (2.6)

such that

Q(Xi+1/2) = 1yP1p (Xi+1/2) + 7'2 P2(Xi+l/ 2 ) + 'Y3 P3(Xi+1 / 2 )

for all possible given data 12j, j - i - 2, i - 1, i, i + 1, i + 2. This is
to say, the higher order reconstruction Q(xi+11 2) can be written as
a linear combination of three lower order reconstructions pj(xi+1/ 2).
The linear weights given in (2.6) depend on local geometry and order
of accuracy, but not on 12j. If some of these linear weights are negative,
special techniques must be used and will be described in next section.

4. We compute the smoothness indicator, denoted by 3j, for each stencil
S3, which measures how smooth the function pj(x) is in the target cell
Ij. The smaller this smoothness indicator,3j, the smoother the function
pj (x) is in the target cell. In most of the currently used WENO schemes
the following smoothness indicator [11] is used:

S 21-1 (2.7)

L=1 4
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for j = 1, 2, 3, for this fifth order case. These smoothness indicators
are quadratic functions of the cell averages in the stencil. For this fifth
order case they can be worked out as follows:

131

01 = 13 (14-2 -- 2ii-1 + ±ji)2 - (fii- 2 - 4fi-1 + 3Ui)2

12 4
13 1

/32 -= 13 (i - 2fii2l + i2i+1) 2 + 1 (3i- 1 - Ui+l (2.8)

12 4
131

/33 =-1 • - -
2 •i+j1 -+ 'ii 2 ) 2 +-- (372 -- 4

i2ij+1 +i2i 2 )2

5. We compute the nonlinear weights based on the smoothness indicators:

= Z&'i 5 ( j (2.9)

where -yj are the linear weights determined in step 3 above, and E is a
small number to avoid the denominator to become 0. Typically, we can
take E = 10-6 in all the computations. The final WENO approximation
or reconstruction is then given by

R(Xi+l/ 2 ) = w 1 Pl(xi+1/2) + w2 P2(xi+1/ 2 ) + w3 P3 (Xi+1/ 2 ) (2.10)

With this WENO reconstruction procedure, a finite volume WENO
scheme is now ready. We give here a very brief summary of all the steps
of a WENO finite volume scheme applied to (2.1) in the one dimensional
scalar case for the positive wind f'(u) > 0. More details can be found in,
e.g., [11, 24, 25]. The algorithm consists of the following steps:

1. Given the cell averages ui for all cells Ii for time level n (starting from
time level 0 which is the initial condition);

2. Reconstruct the point values u- for all cell boundaries Xi+l/ 2 using

the reconstruction procedure detailed above. That is, we use (2.10)
with wj defined by (2.9), using 'yj given by (2.6) and 13j given by (2.8).
The superscript "-" in u- refers to the fact that the reconstruction

i+ 1/2

has a stencil (2.3) biased to the left relative to the location xi+112. This
is upwinding according to the wind direction f'(u) > 0.

3. Form the residue for time level n in the method-of-lines ODE

dii 1
dt Ax f(i12 f U1/)

and move to time level n+1 by a high order TVD Runge-Kutta method
[26].
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Next we describe the setup of a finite difference scheme for solving (2.1).
A semi-discrete finite difference scheme for (2.1) is an ODE system for the
point values {ui(t)}, i = 1, ... , N, where ui(t) approximate the point values
of the solution u(xi, t). We also insist on a conservative approximation to
the derivative f(u). in the form of

f X1X 1 " (fi+•1/2- A--1/2) (2.11)
f(u) =, �2.11

where A+1/2 is the numerical flux, which typically is a Lipschitz continuous
function of several neighboring values of uj around xi.

At a first glance, the finite difference scheme has nothing in common
with the finite volume scheme described above, as they approximate differ-
ent values of the solution. However, the following observation, first intro-
duced in [27], establishes a close relationship between the two. If we identify
a function h(x) by

fMx f x- h(=)1f, (2.12)
2

where we have suppressed the t dependency of the function as we are in-
terested now only at spatial discretizations, then by just taking derivatives
on both sides of the above equality we obtain

f(u(x))x = [ hx+ A) h x- A .

This means that we only need to take the numerical flux as

fi+1/2 = h(xi+1 12 ). (2.13)

If we could get an approximation to h(x) to high order accuracy, the con-
servative approximation to the derivative in (2.11) would also be of the
same high order of accuracy. Notice that (2.12) can be written as

f(ui) = hi,

i.e. we are given the cell averages of h (since we know the point values
ui, hence also f(ui), in a finite difference scheme) and we would need to
reconstruct its point values h(Xi+±1 2) for the numerical flux (2.13). But this
is exactly the same reconstruction problem in Procedure 2.1 above for finite
volume schemes!

Thus for one space dimension, the finite difference and finite volume
schemes share the same reconstruction procedure, applied in different con-
texts (on cell averages of u for the finite volume schemes, and on point
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values of f(u) for the finite difference schemes). They involve the same
complexity and cost. Finite difference schemes are more restrictive in the
situations that they can be applied, as they only work for uniform or smooth

varying meshes and a flux splitting (for upwinding) must be smooth.

However, for multiple space dimensions, there are essential differences

between these two classes of methods, when the order of accuracy is at least

three. While finite difference schemes can still be applied in a dimension-
by-dimension fashion (not dimension splitting!), i.e. computing f(u)x along

a x-line with fixed y using the procedure above, and likewise for g(u)y, then

adding them together to form the residue, finite volume schemes of third

order or higher must involve multi-dimensional reconstructions from cell

averages to point values and then numerical integrations to get the numeri-
cal fluxes along the boundaries of cells. The details of these reconstructions
can be found in, e.g., [24, 25, 9, 23]. As such, the operation count and CPU
time for a finite volume scheme is around two to four times more expensive
in two dimensions and around five to nine times more expensive in three
dimensions, compared with a finite difference scheme of the same order of
accuracy, see, e.g. [3] for such a comparison for ENO schemes. In return, the
finite volume schemes do allow more flexibility in their applications. They
can be applied in arbitrary triangulations and do not require smoothness
of the meshes. On the other hand, finite difference schemes can only be
applied to uniform rectangular or smooth curvilinear coordinates.

3. Two recent developments of WENO schemes

In this section we briefly describe two recent developments in WENO

schemes. The first is a technique to treat negative linear weights in [23].
The second is a class of high order central WENO schemes in [22].

3.1. A TECHNIQUE TO TREAT NEGATIVE LINEAR WEIGHTS

As we can see from the previous section, a key idea in the WENO recon-

struction is to write a high order reconstruction as a linear combination
of several lower order reconstructions. The combination coefficients, also

called linear weights, are determined by local geometry and order of ac-

curacy. In many cases these linear weights are positive, such as in (2.6).
However there are also situations where some of them become negative.

For example, if we have exactly the same setting as in the previous section
but now we seek the reconstruction not at the cell boundary but at the cell

center xi, as needed by the central schemes with staggered grids [13], [22],

then step 1 would stay the same as above; step 2 would produce

1 1 23

- 24 12 24
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1 13 1P2 (Xi) = 2•Ui-1L + •-iui -- •ui, (3.1)

23 1 1
P(X)= U1-- i2 -

24 +1-2 2

Each of them is a third order reconstruction to u(xi). The fifth order re-
construction to u(xi), associated with Q(x), is given by:

3 29 1067 29 3
Q(Xi) = U- 2 - 4-8-Uil1 + - f -T 4 1i+1 + •-ii+2. (3.2)

Step 3 would produce the following weights:

9 49 9
71 =--- 72 = -, 73 8080 4 0

Notice that two of them are negative. The smoothness indicators in step 4
will remain the same. This time, the WENO approximation, when naively
applied, leads to unstable results because of the negative linear weights. As
an example, in Fig. 3.1, left, we show the results of using a fourth order
finite volume WENO scheme [9] on a non-uniform triangular mesh, for
solving the two dimensional Burgers equation:

Ut+ ) ( (3.3)

in the domain [-2,2] x [-2,2] with an initial condition uO(x, y) = 0.3 +
0.7 sin (! (x + y)) and periodic boundary conditions. We can see that serious
oscillation appears near the shock in the numerical solution once the shock
has developed. The oscillation eventually leads to instability and blowing
up of the numerical solution for this example.

A simple splitting technique of treating negative weights in WENO
schemes is developed by Shi, Hu and Shu in [23]: we first split the linear
weights into two groups

1+ + 3 1 7i = + -+ , i = 1,2,3

and scale them by

3O1 = 1: -±; ; y =;t l±, i = 1,2,3.
j=1

For the simple example of fifth order WENO reconstruction to u(xi), the
split linear weights are, before the scaling,

99 9 _+ 49 49 9 _ 9i1 = To, 71 -) I 72 ' = T - 1 40402 80' 40'
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-2 2

Figure 3.1. 2D Burgers' equation. Left: fourth order WENO result at t = 0.473,
CFL=0.2, without any special treatment for the negative linear weights; Right: fourth
order WENO solution at t = 5/7r2 , CFL=0.2, with the treatment for the negative linear
weights.

The WENO reconstruction is now performed on each group separately, by
computing the nonlinear weights (2.9) separately for wj with the same
smoothness indicators Oj in (2.7). The final WENO reconstruction is then
taken as o+ times the reconstruction using the group of positive weights
minus a- times the reconstruction using the group of negative weights.
The key idea of this decomposition is to make sure that every stencil has
a significant representation in both the positive and the negative weight
groups. Within each group, the WENO idea of redistributing the weights
subject to a fixed sum according to the smoothness of the approximation
is still followed as before. For more details, we refer to [23].

We notice that, as the most expensive part of the WENO procedure,
namely the computation of the smoothness indicators (2.7), has not changed,
the extra cost of this positive/negative weight splitting is very small. How-
ever this simple and inexpensive change makes a big difference to the com-
putations. In Fig. 3.1, right, we show the result of the approximation to the
Burgers equation, now using WENO schemes with this splitting treatment.
We can see clearly that the results are now as good as one would get from
WENO schemes having only positive linear weights.

3.2. HIGH ORDER CENTRAL WENO SCHEMES

In [22] a class of fourth and eighth order central WENO (CWENO) schemes
have been constructed and the role of local characteristic decompositions
on eliminating spurious oscillations is demonstrated. We will give a brief
description of such schemes here.
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The notations are the same as before, plus the new one for staggered
cells Ii+½ = [xi, xi+i]. Let At be the time step, pn= u(xi, tn) denotes

22

the point values, and j-n= f U(X'--nd

represent the cell averages at time tn on the cells Ii and Ii+½, respectively.
2

The CWENO scheme approximates the cell averages at time tn+1 based on
their values at time t' with staggered space grids. We integrate (2.1) over
the region Ii+½ x [tn', tn+'], to get an equivalent formulation:

un+1 - f (u(xi, t))dt (3.4)
i+1.= i+i ftn

What we want to do is to find approximations of the cell averages + n

the two integrals in (3.4). Thus the algorithm consists of two major steps
to evolve from {J-- to { un+, }:

1. The approximation of Un 1½from the knowledge of {I-- by a WENO

reconstruction. Notice that

5 1x [jx+u(x, tn)dx-+ J u(x, tn)dx]•n+½~ ~ =(~nd +1 uu~, x~x -- ')dx •+

hence we only need to reconstruct - ___ u(x, tn)dx for all i because

1 f ~ax i f x~ii

1fx+½u(x,'tn)dx=U __ Ifx u(x, tn)dx (3.5)

by conservation. The WENO reconstruction for this step is very similar
to Procedure 2.1. . tn'{1

2. The approximation of fn f(u(xi, t))dt. If the time step At is subject
to a restrictive CFL condition At < x- maxif'(u)h, we can assume

-2
that u(xi, t) is smooth, since the discontinuities starting at tn from the
staggered grid points xi_½ and xi+1 have not reached the cell boundary
x2 yet. Hence no Riemann solvers are needed and the time integrals

can be evaluated with a quadrature formula to high order accuracy.
Notice that this is equivalent to a Lax-Friedrichs scheme and the same
effect can also be achieved without a staggered mesh by just using a
Lax-Friedrichs building block, such as those WENO finite difference
schemes in [11], [1] where the Lax-Friedrichs building blocks are used
and no Riemann solvers are needed either. We could for example use
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a three point Gauss quadrature, obtaining

tn+l 3

f(u(xi,t))dt : At al lf(u(xi, tn + At7-))
I=1

where a• and Tj are the weights and knots of the Gauss quadrature,
respectively. Now what we want to do is to find the approximation of
the point values u(xi, t' + AtTI) from the cell averages f --y. This can

be achieved by solving the ODE at the grid points x = xi:

dt (3.6)u(Xi,tP) Pý- Yn

with picomputed by a WENO reconstruction from the cell averages
{ -, very similar to Procedure 2.1 above. The ODE (3.6) is solved by

a Runge-Kutta method to obtain the approximation of u(xi, tn+ AtTI),
with the aid of natural continuous extension (NCE) for (3.6), [29], see
[2] and [22] for details.
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